Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Robert T. Stibrany, Harvey J. Schugar and Joseph A. Potenza*

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA

Correspondence e-mail:
potenza@rutchem.rutgers.edu

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.060$
$w R$ factor $=0.174$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-Bis(1-ethylbenzimidazol-2-yl)biphenyl

The title compound, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4}$, adopts a folded, twisted clamshell geometry in the solid state in which the ethyl groups are trans, and in which the imidazole fragments of the benzimidazole units are nearly eclipsed. Distances between imidazole fragments indicate extensive intramolecular $\pi-\pi$ interactions. The molecules pack in columns along b with little, if any, intermolecular $\pi-\pi$ interactions. In contrast, the n-propyl analog, 2,2'-bis(1-propylbenzimidazol-2-yl)]biphenyl, adopts an extended conformation with little, if any, $\pi-\pi$ interactions of any kind.

Comment

Bis(imidazole)biphenyl and bis(benzimidazole)biphenyl species such as (I) and (II), with three torsional degrees of freedom, have been used as ligands to study electron selfexchange (Knapp et al., 1990; Xie et al., 1999), and to enforce near-tetrahedral coordination in transition metal complexes (Stibrany et al., 2003). They have also found use in catalysis (Stibrany, Matturo et al., 2002) and have been shown to act as proton sponges (Stibrany, Schugar \& Potenza, 2002).

(I)

(IIa) $R=$ ethyl
(IIb) $R=n$-propyl
The title compound, (II a) (Fig. 1), adopts a compact twisted clamshell conformation with the ethyl groups trans. Both the substituted phenyl (ph) and benzimidazole (bz) fragments are planar. Fragment planarity, coupled with the $\mathrm{ph} / \mathrm{ph}\left[63.10(8)^{\circ}\right]$ and $\mathrm{ph} / \mathrm{bz}$ [54.47 (6) and $48.29(6)^{\circ}$] dihedral angles, give the molecule a pseudo-twofold axis passing through the midpoint of the C21-C31 bond and between the bz fragments. The shortest distances between C and N atoms of the nearly eclipsed imidazole fragments range from 3.167 (3) \AA for $\mathrm{C} 12 \cdots \mathrm{C} 42$ to 3.673 (3) \AA for $\mathrm{N} 11 \cdots \mathrm{C} 43$, indicative of intramolecular $\pi-\pi$ interactions. In type (II) species, the molecular shape correlates with the $\mathrm{ph} / \mathrm{ph}$ dihedral angle. Thus, the

Figure 1
The molecular structure of the title compound, showing 25% probability displacement ellipsoids.
proton sponge $\mathrm{II} b \mathrm{H}^{+}$(Stibrany, Schugar \& Potenza, 2002) adopts a more open structure than ($\mathrm{II} a$), consistent with its larger $\mathrm{ph} / \mathrm{ph}$ dihedral angle $\left[88.6(6)^{\circ}\right.$], while molecules of (IIb), with $\mathrm{ph} / \mathrm{ph}$ dihedral angles of 126.71 (1) and 129.93 (1) ${ }^{\circ}$ for two unique molecules, exhibit an open trans structure with little evidence of intra- or intermolecular $\pi-\pi$ interactions (Stibrany et al., 2003).

(III)

(IV)

Metric parameters in the benzimidazole fragments of (II a) agree well with those reported for 18 neutral benzimidazole structures (III) having carbon substituents at the N1 and C2 positions [Cambridge Structural Database, Version 5.24 (Allen, 2002); refcodes: DIKFEI, HIXXAX, HOHHUH, JELROH, LEBGOO, MEVTAI, MEVTEM, NUBCOC, QAXKAB, QIBPEW, QIFPOK, SAGDIN, UBIPUQ, XITZOP, YAXDAC and ZENSOA]. Benzimidazoles unsubstituted at the C2 position, (IV), show equivalent distances for the imidazole fragments, except for the the $\mathrm{C} 2-\mathrm{N}$ (amine) distances which are significantly shorter in the unsubstituted compounds (Allen, 2002; refcodes: CAXKUH, MIFVUS, NEBFUV, SEMWAI, SIGVIG and VENSAI). We have not explored the extent to which this difference arises from steric and/or electronic effects.

Figure 2
View of the unit cell along b. H atoms are omitted for clarity.

Molecules of (II a) stack along b in columns (Fig. 2) related to each other by the centers of symmetry, glide planes and screw axes of the space group.

Experimental

The title compound, (II a), was obtained by condensation of phenylenediamine with diphenic acid, followed by alkylation with ethyl iodide. Details of the preparation will be published elsewhere (Stibrany et al., 2003). Crystals were obtained by slow evaporation of a solution of ($\mathrm{I} a)$ in a mixture of ethanol and triethyl orthoformate. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(d, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(d, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H}), 3.67$ (brd $s, 4 \mathrm{H}), 1.19(t, J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5$ 143.4, 141.1, 134.5 , $131.5,130.7,130.0,129.4,127.41,122.2,121.8,120.0,110.0,38.9,14.8$.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4}$
$M_{r}=442.55$
Monoclinic, $P 2_{1 / c} c$
$a=12.0156$ (6) Å
$b=10.7001$ (6) \AA
$c=18.6280$ (9) \AA
$\beta=95.177$ (4) ${ }^{\circ}$
$V=2385.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.19$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in carbon tetrachloride/cyclohexane
Mo $K \alpha$ radiation
Cell parameters from 821 reflections
$\theta=2.2-23.1^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block, colorless
$0.38 \times 0.36 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	4179 independent reflections
diffractometer	3375 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.036$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Blessing, 1995)	$h=-13 \rightarrow 14$
$T_{\min }=0.869, T_{\max }=1.000$	$k=-12 \rightarrow 12$
16281 measured reflections	$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1086 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$	$+0.4514 P]$
$w R\left(F^{2}\right)=0.174$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\max }<0.001$
4179 reflections	$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
411 parameters	$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
All H-atom parameters refined	

Table 1

Selected geometric parameters (A).

N11-C12			
N41-C42	$1.383(3)$	N43-C43	$1.387(3)$
N13-C12	$1.385(3)$	N11-C11	$1.387(3)$
N43-C42	$1.314(3)$	N41-C41	$1.385(3)$
N13-C13	$1.312(3)$	C11-C13	$1.395(3)$

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve
structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2000). SHELXTL(Version6.10), SAINT-Plus (Version 6.02) and SMART-WNT/2000 (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A., \& Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stibrany, R. T., Matturo, M. G., Zushma, S. \& Patil, A. O. (2002). US Patent 6501000.

Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2002). Acta Cryst. E58, o1142o1144.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2003). Inorg. Chem. In preparation.
Xie, B., Elder, T., Wilson, L. J. \& Stanbury, D. M. (1999). Inorg. Chem. 38, 1219.

